## 前言 之前我们有解析过[【kafka源码】Controller启动过程以及选举流程源码分析](), 其中在分析过程中,Broker在当选Controller之后,需要初始化Controller的上下文中, 有关于Controller与Broker之间的网络通信的部分我没有细讲,因为这个部分我想单独来讲;所以今天 我们就来好好分析分析**Controller与Brokers之间的网络通信** ## 源码分析 ### 1. 源码入口 ControllerChannelManager.startup() 调用链路 ->`KafkaController.processStartup` ->`KafkaController.elect()` ->`KafkaController.onControllerFailover()` ->`KafkaController.initializeControllerContext()` ```scala def startup() = { // 把所有存活的Broker全部调用 addNewBroker这个方法 controllerContext.liveOrShuttingDownBrokers.foreach(addNewBroker) brokerLock synchronized { //开启 网络请求线程 brokerStateInfo.foreach(brokerState => startRequestSendThread(brokerState._1)) } } ``` ### 2. addNewBroker 构造broker的连接信息 > 将所有存活的brokers 构造一些对象例如`NetworkClient`、`RequestSendThread` 等等之类的都封装到对象`ControllerBrokerStateInfo`中; > 由`brokerStateInfo`持有对象 key=brokerId; value = `ControllerBrokerStateInfo` ```scala private def addNewBroker(broker: Broker): Unit = { // 省略部分代码 val threadName = threadNamePrefix match { case None => s"Controller-${config.brokerId}-to-broker-${broker.id}-send-thread" case Some(name) => s"$name:Controller-${config.brokerId}-to-broker-${broker.id}-send-thread" } val requestRateAndQueueTimeMetrics = newTimer( RequestRateAndQueueTimeMetricName, TimeUnit.MILLISECONDS, TimeUnit.SECONDS, brokerMetricTags(broker.id) ) //构造请求发送线程 val requestThread = new RequestSendThread(config.brokerId, controllerContext, messageQueue, networkClient, brokerNode, config, time, requestRateAndQueueTimeMetrics, stateChangeLogger, threadName) requestThread.setDaemon(false) val queueSizeGauge = newGauge(QueueSizeMetricName, () => messageQueue.size, brokerMetricTags(broker.id)) //封装好对象 缓存在brokerStateInfo中 brokerStateInfo.put(broker.id, ControllerBrokerStateInfo(networkClient, brokerNode, messageQueue, requestThread, queueSizeGauge, requestRateAndQueueTimeMetrics, reconfigurableChannelBuilder)) } ``` 1. 将所有存活broker 封装成一个个`ControllerBrokerStateInfo`对象保存在缓存中; 对象中包含了`RequestSendThread` 请求发送线程 对象; 什么时候执行发送线程 ,我们下面分析 2. `messageQueue:` 一个阻塞队列,里面放的都是待执行的请求,里面的对象`QueueItem` 封装了 请求接口`ApiKeys`,`AbstractControlRequest`请求体对象;`AbstractResponse` 回调函数和`enqueueTimeMs`入队时间 3. `RequestSendThread` 发送请求的线程 , 跟Broker们的网络连接就是通过这里进行的;比如下图中向Brokers们(当然包含自己)发送`UPDATE_METADATA`更新元数据的请求 ![在这里插入图片描述](https://img-blog.csdnimg.cn/20210611174518555.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3UwMTA2MzQwNjY=,size_16,color_FFFFFF,t_70) ### 3. startRequestSendThread 启动网络请求线程 >把所有跟Broker连接的网络请求线程开起来 ```scala protected def startRequestSendThread(brokerId: Int): Unit = { val requestThread = brokerStateInfo(brokerId).requestSendThread if (requestThread.getState == Thread.State.NEW) requestThread.start() } } ``` 线程执行代码块 ; 以下省略了部分代码 ```scala override def doWork(): Unit = { def backoff(): Unit = pause(100, TimeUnit.MILLISECONDS) //从阻塞请求队列里面获取有没有待执行的请求 val QueueItem(apiKey, requestBuilder, callback, enqueueTimeMs) = queue.take() requestRateAndQueueTimeMetrics.update(time.milliseconds() - enqueueTimeMs, TimeUnit.MILLISECONDS) var clientResponse: ClientResponse = null try { var isSendSuccessful = false while (isRunning && !isSendSuccessful) { // if a broker goes down for a long time, then at some point the controller's zookeeper listener will trigger a // removeBroker which will invoke shutdown() on this thread. At that point, we will stop retrying. try { //检查跟Broker的网络连接是否畅通,如果连接不上会重试 if (!brokerReady()) { isSendSuccessful = false backoff() } else { //构建请求参数 val clientRequest = networkClient.newClientRequest(brokerNode.idString, requestBuilder, time.milliseconds(), true) //发起网络请求 clientResponse = NetworkClientUtils.sendAndReceive(networkClient, clientRequest, time) isSendSuccessful = true } } catch { } if (clientResponse != null) { val requestHeader = clientResponse.requestHeader val api = requestHeader.apiKey if (api != ApiKeys.LEADER_AND_ISR && api != ApiKeys.STOP_REPLICA && api != ApiKeys.UPDATE_METADATA) throw new KafkaException(s"Unexpected apiKey received: $apiKey") if (callback != null) { callback(response) } } } catch { } } ``` 1. 从请求队列`queue`中take请求; 如果有的话就开始执行,没有的话就阻塞住 2. 检查请求的目标Broker是否可以连接; 连接不通会一直进行尝试,然后在某个时候,控制器的 zookeeper 侦听器将触发一个 `removeBroker`,它将在此线程上调用 shutdown()。就不会在重试了 3. 发起请求; 4. 如果请求失败,则重新连接Broker发送请求 5. 返回成功,调用回调接口 6. 值得注意的是 Controller发起的请求,收到Response中的ApiKeys中如果不是 `LEADER_AND_ISR`、`STOP_REPLICA`、`UPDATE_METADATA` 三个请求,就会抛出异常; 不会进行callBack的回调; 不过也是很奇怪,如果Controller限制只能发起这几个请求的话,为什么在发起请求之前去做拦截,而要在返回之后做拦截; **个人猜测 可能是Broker在Response带上ApiKeys, 在Controller 调用callBack的时候可能会根据ApiKeys的不同而处理不同逻辑吧;但是又只想对Broker开放那三个接口;** ### 4. 向RequestSendThread的请求队列queue中添加请求 > 上面的线程启动完成之后,queue中还没有待执行的请求的,那么什么时候有添加请求呢? 添加请求最终都会调用接口`` ,反查一下就知道了; ```java def sendRequest(brokerId: Int, request: AbstractControlRequest.Builder[_ <: AbstractControlRequest], callback: AbstractResponse => Unit = null): Unit = { brokerLock synchronized { val stateInfoOpt = brokerStateInfo.get(brokerId) stateInfoOpt match { case Some(stateInfo) => stateInfo.messageQueue.put(QueueItem(request.apiKey, request, callback, time.milliseconds())) case None => warn(s"Not sending request $request to broker $brokerId, since it is offline.") } } } ``` **这里举一个**🌰 ; 看看Controller向Broker发起一个`UPDATE_METADATA`请求; ![在这里插入图片描述](https://img-blog.csdnimg.cn/20210611182731937.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3UwMTA2MzQwNjY=,size_16,color_FFFFFF,t_70) ![在这里插入图片描述](https://img-blog.csdnimg.cn/20210611183114551.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3UwMTA2MzQwNjY=,size_16,color_FFFFFF,t_70) 1. 可以看到调用了`sendRequest`请求 ; 请求的接口ApiKey=`UPDATE_METADATA` 2. 回调方法就是如上所示; 向事件管理器`ControllerChannelManager`中添加一个事件`UpdateMetadataResponseReceived` 3. 当请求成功之后,调用2中的callBack, `UpdateMetadataResponseReceived`被添加到事件管理器中; 就会立马被执行(排队) 4. 执行地方如下图所示,只不过它也没干啥,也就是如果返回异常response就打印一下日志 ![在这里插入图片描述](https://img-blog.csdnimg.cn/2021061118385771.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3UwMTA2MzQwNjY=,size_16,color_FFFFFF,t_70) ### 5. Broker接收Controller的请求 > 上面说了Controller对所有Brokers(当然也包括自己)发起请求; 那么Brokers接受请求的地方在哪里呢,我们下面分析分析 这个部分内容我们在[【kafka源码】TopicCommand之创建Topic源码解析]() 中也分析过,处理过程都是一样的; 比如还是上面的例子🌰, 发起请求了之后,Broker处理的地方在`KafkaRequestHandler.run`里面的`apis.handle(request)`; ![在这里插入图片描述](https://img-blog.csdnimg.cn/20210611184840506.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3UwMTA2MzQwNjY=,size_16,color_FFFFFF,t_70) 可以看到这里列举了所有的接口请求;我们找到`UPDATE_METADATA`处理逻辑; 里面的处理逻辑就不进去看了,不然超出了本篇文章的范畴; ### 6. Broker服务下线 我们模拟一下Broker宕机了, 手动把zk上的` /brokers/ids/broker节点`删除; 因为Controller是有对节点`watch`的, 就会看到Controller收到了变更通知,并且调用了 `KafkaController.processBrokerChange()`接口; ```scala private def processBrokerChange(): Unit = { if (!isActive) return val curBrokerAndEpochs = zkClient.getAllBrokerAndEpochsInCluster val curBrokerIdAndEpochs = curBrokerAndEpochs map { case (broker, epoch) => (broker.id, epoch) } val curBrokerIds = curBrokerIdAndEpochs.keySet val liveOrShuttingDownBrokerIds = controllerContext.liveOrShuttingDownBrokerIds val newBrokerIds = curBrokerIds -- liveOrShuttingDownBrokerIds val deadBrokerIds = liveOrShuttingDownBrokerIds -- curBrokerIds val bouncedBrokerIds = (curBrokerIds & liveOrShuttingDownBrokerIds) .filter(brokerId => curBrokerIdAndEpochs(brokerId) > controllerContext.liveBrokerIdAndEpochs(brokerId)) val newBrokerAndEpochs = curBrokerAndEpochs.filter { case (broker, _) => newBrokerIds.contains(broker.id) } val bouncedBrokerAndEpochs = curBrokerAndEpochs.filter { case (broker, _) => bouncedBrokerIds.contains(broker.id) } val newBrokerIdsSorted = newBrokerIds.toSeq.sorted val deadBrokerIdsSorted = deadBrokerIds.toSeq.sorted val liveBrokerIdsSorted = curBrokerIds.toSeq.sorted val bouncedBrokerIdsSorted = bouncedBrokerIds.toSeq.sorted info(s"Newly added brokers: ${newBrokerIdsSorted.mkString(",")}, " + s"deleted brokers: ${deadBrokerIdsSorted.mkString(",")}, " + s"bounced brokers: ${bouncedBrokerIdsSorted.mkString(",")}, " + s"all live brokers: ${liveBrokerIdsSorted.mkString(",")}") newBrokerAndEpochs.keySet.foreach(controllerChannelManager.addBroker) bouncedBrokerIds.foreach(controllerChannelManager.removeBroker) bouncedBrokerAndEpochs.keySet.foreach(controllerChannelManager.addBroker) deadBrokerIds.foreach(controllerChannelManager.removeBroker) if (newBrokerIds.nonEmpty) { controllerContext.addLiveBrokersAndEpochs(newBrokerAndEpochs) onBrokerStartup(newBrokerIdsSorted) } if (bouncedBrokerIds.nonEmpty) { controllerContext.removeLiveBrokers(bouncedBrokerIds) onBrokerFailure(bouncedBrokerIdsSorted) controllerContext.addLiveBrokersAndEpochs(bouncedBrokerAndEpochs) onBrokerStartup(bouncedBrokerIdsSorted) } if (deadBrokerIds.nonEmpty) { controllerContext.removeLiveBrokers(deadBrokerIds) onBrokerFailure(deadBrokerIdsSorted) } if (newBrokerIds.nonEmpty || deadBrokerIds.nonEmpty || bouncedBrokerIds.nonEmpty) { info(s"Updated broker epochs cache: ${controllerContext.liveBrokerIdAndEpochs}") } } ``` 1. 这里会去zk里面获取所有的Broker信息; 并将得到的数据跟当前Controller缓存中的所有Broker信息做对比; 2. 如果有新上线的Broker,则会执行 Broker上线的流程 3. 如果有删除的Broker,则执行Broker下线的流程; 比如`removeLiveBrokers` 收到删除节点之后, Controller 会觉得Broker已经下线了,即使那台Broker服务是正常的,那么它仍旧提供不了服务 ### 7. Broker上下线 本篇主要讲解**Controller与Brokers之间的网络通信** 故**Broker上下线**内容单独开一篇文章来详细讲解 [【kafka源码】Brokers的上下线流程](https://shirenchuang.blog.csdn.net/article/details/117846476) ## 源码总结 本篇文章内容比较简单, Controller和Broker之间的通信就是通过 `RequestSendThread` 这个线程来进行发送请求; `RequestSendThread`维护的阻塞请求队列在没有任务的时候处理阻塞状态; 当有需要发起请求的时候,直接向`queue`中添加任务就行了; Controller自身也是一个Broker,所以Controller发出的请求,自己也会收到并且执行 ## Q&A ### 如果Controller与Broker网络连接不通会怎么办? > 会一直进行重试, 直到zookeeper发现Broker通信有问题,会将这台Broker的节点移除,Controller就会收到通知,并将Controller与这台Broker的`RequestSendThread`线程shutdown;就不会再重试了; 如果zk跟Broker之间网络通信是正常的,只是发起的逻辑请求就是失败,则会一直进行重试 ### 如果手动将zk中的 /brokers/ids/ 下的子节点删除会怎么样? >手动删除` /brokers/ids/Broker的ID`, Controller收到变更通知,则将该Broker在Controller中处理下线逻辑; 所有该Broker已经游离于集群之外,即使它服务还是正常的,但是它却提供不了服务了; 只能重启该Broker重新注册;