14 KiB
前言
之前我们有解析过【kafka源码】Controller启动过程以及选举流程源码分析, 其中在分析过程中,Broker在当选Controller之后,需要初始化Controller的上下文中, 有关于Controller与Broker之间的网络通信的部分我没有细讲,因为这个部分我想单独来讲;所以今天 我们就来好好分析分析Controller与Brokers之间的网络通信
源码分析
1. 源码入口 ControllerChannelManager.startup()
调用链路
->KafkaController.processStartup
->KafkaController.elect()
->KafkaController.onControllerFailover()
->KafkaController.initializeControllerContext()
def startup() = {
// 把所有存活的Broker全部调用 addNewBroker这个方法
controllerContext.liveOrShuttingDownBrokers.foreach(addNewBroker)
brokerLock synchronized {
//开启 网络请求线程
brokerStateInfo.foreach(brokerState => startRequestSendThread(brokerState._1))
}
}
2. addNewBroker 构造broker的连接信息
将所有存活的brokers 构造一些对象例如
NetworkClient、RequestSendThread等等之类的都封装到对象ControllerBrokerStateInfo中; 由brokerStateInfo持有对象 key=brokerId; value =ControllerBrokerStateInfo
private def addNewBroker(broker: Broker): Unit = {
// 省略部分代码
val threadName = threadNamePrefix match {
case None => s"Controller-${config.brokerId}-to-broker-${broker.id}-send-thread"
case Some(name) => s"$name:Controller-${config.brokerId}-to-broker-${broker.id}-send-thread"
}
val requestRateAndQueueTimeMetrics = newTimer(
RequestRateAndQueueTimeMetricName, TimeUnit.MILLISECONDS, TimeUnit.SECONDS, brokerMetricTags(broker.id)
)
//构造请求发送线程
val requestThread = new RequestSendThread(config.brokerId, controllerContext, messageQueue, networkClient,
brokerNode, config, time, requestRateAndQueueTimeMetrics, stateChangeLogger, threadName)
requestThread.setDaemon(false)
val queueSizeGauge = newGauge(QueueSizeMetricName, () => messageQueue.size, brokerMetricTags(broker.id))
//封装好对象 缓存在brokerStateInfo中
brokerStateInfo.put(broker.id, ControllerBrokerStateInfo(networkClient, brokerNode, messageQueue,
requestThread, queueSizeGauge, requestRateAndQueueTimeMetrics, reconfigurableChannelBuilder))
}
- 将所有存活broker 封装成一个个
ControllerBrokerStateInfo对象保存在缓存中; 对象中包含了RequestSendThread请求发送线程 对象; 什么时候执行发送线程 ,我们下面分析 messageQueue:一个阻塞队列,里面放的都是待执行的请求,里面的对象QueueItem封装了 请求接口ApiKeys,AbstractControlRequest请求体对象;AbstractResponse回调函数和enqueueTimeMs入队时间RequestSendThread发送请求的线程 , 跟Broker们的网络连接就是通过这里进行的;比如下图中向Brokers们(当然包含自己)发送UPDATE_METADATA更新元数据的请求
3. startRequestSendThread 启动网络请求线程
把所有跟Broker连接的网络请求线程开起来
protected def startRequestSendThread(brokerId: Int): Unit = {
val requestThread = brokerStateInfo(brokerId).requestSendThread
if (requestThread.getState == Thread.State.NEW)
requestThread.start()
}
}
线程执行代码块 ; 以下省略了部分代码
override def doWork(): Unit = {
def backoff(): Unit = pause(100, TimeUnit.MILLISECONDS)
//从阻塞请求队列里面获取有没有待执行的请求
val QueueItem(apiKey, requestBuilder, callback, enqueueTimeMs) = queue.take()
requestRateAndQueueTimeMetrics.update(time.milliseconds() - enqueueTimeMs, TimeUnit.MILLISECONDS)
var clientResponse: ClientResponse = null
try {
var isSendSuccessful = false
while (isRunning && !isSendSuccessful) {
// if a broker goes down for a long time, then at some point the controller's zookeeper listener will trigger a
// removeBroker which will invoke shutdown() on this thread. At that point, we will stop retrying.
try {
//检查跟Broker的网络连接是否畅通,如果连接不上会重试
if (!brokerReady()) {
isSendSuccessful = false
backoff()
}
else {
//构建请求参数
val clientRequest = networkClient.newClientRequest(brokerNode.idString, requestBuilder,
time.milliseconds(), true)
//发起网络请求
clientResponse = NetworkClientUtils.sendAndReceive(networkClient, clientRequest, time)
isSendSuccessful = true
}
} catch {
}
if (clientResponse != null) {
val requestHeader = clientResponse.requestHeader
val api = requestHeader.apiKey
if (api != ApiKeys.LEADER_AND_ISR && api != ApiKeys.STOP_REPLICA && api != ApiKeys.UPDATE_METADATA)
throw new KafkaException(s"Unexpected apiKey received: $apiKey")
if (callback != null) {
callback(response)
}
}
} catch {
}
}
- 从请求队列
queue中take请求; 如果有的话就开始执行,没有的话就阻塞住 - 检查请求的目标Broker是否可以连接; 连接不通会一直进行尝试,然后在某个时候,控制器的 zookeeper 侦听器将触发一个
removeBroker,它将在此线程上调用 shutdown()。就不会在重试了 - 发起请求;
- 如果请求失败,则重新连接Broker发送请求
- 返回成功,调用回调接口
- 值得注意的是 Controller发起的请求,收到Response中的ApiKeys中如果不是
LEADER_AND_ISR、STOP_REPLICA、UPDATE_METADATA三个请求,就会抛出异常; 不会进行callBack的回调; 不过也是很奇怪,如果Controller限制只能发起这几个请求的话,为什么在发起请求之前去做拦截,而要在返回之后做拦截; 个人猜测 可能是Broker在Response带上ApiKeys, 在Controller 调用callBack的时候可能会根据ApiKeys的不同而处理不同逻辑吧;但是又只想对Broker开放那三个接口;
4. 向RequestSendThread的请求队列queue中添加请求
上面的线程启动完成之后,queue中还没有待执行的请求的,那么什么时候有添加请求呢?
添加请求最终都会调用接口`` ,反查一下就知道了;
def sendRequest(brokerId: Int, request: AbstractControlRequest.Builder[_ <: AbstractControlRequest],
callback: AbstractResponse => Unit = null): Unit = {
brokerLock synchronized {
val stateInfoOpt = brokerStateInfo.get(brokerId)
stateInfoOpt match {
case Some(stateInfo) =>
stateInfo.messageQueue.put(QueueItem(request.apiKey, request, callback, time.milliseconds()))
case None =>
warn(s"Not sending request $request to broker $brokerId, since it is offline.")
}
}
}
这里举一个🌰 ; 看看Controller向Broker发起一个UPDATE_METADATA请求;

- 可以看到调用了
sendRequest请求 ; 请求的接口ApiKey=UPDATE_METADATA - 回调方法就是如上所示; 向事件管理器
ControllerChannelManager中添加一个事件UpdateMetadataResponseReceived - 当请求成功之后,调用2中的callBack,
UpdateMetadataResponseReceived被添加到事件管理器中; 就会立马被执行(排队) - 执行地方如下图所示,只不过它也没干啥,也就是如果返回异常response就打印一下日志

5. Broker接收Controller的请求
上面说了Controller对所有Brokers(当然也包括自己)发起请求; 那么Brokers接受请求的地方在哪里呢,我们下面分析分析
这个部分内容我们在【kafka源码】TopicCommand之创建Topic源码解析 中也分析过,处理过程都是一样的;
比如还是上面的例子🌰, 发起请求了之后,Broker处理的地方在KafkaRequestHandler.run里面的apis.handle(request);

可以看到这里列举了所有的接口请求;我们找到UPDATE_METADATA处理逻辑;
里面的处理逻辑就不进去看了,不然超出了本篇文章的范畴;
6. Broker服务下线
我们模拟一下Broker宕机了, 手动把zk上的 /brokers/ids/broker节点删除; 因为Controller是有对节点watch的, 就会看到Controller收到了变更通知,并且调用了 KafkaController.processBrokerChange()接口;
private def processBrokerChange(): Unit = {
if (!isActive) return
val curBrokerAndEpochs = zkClient.getAllBrokerAndEpochsInCluster
val curBrokerIdAndEpochs = curBrokerAndEpochs map { case (broker, epoch) => (broker.id, epoch) }
val curBrokerIds = curBrokerIdAndEpochs.keySet
val liveOrShuttingDownBrokerIds = controllerContext.liveOrShuttingDownBrokerIds
val newBrokerIds = curBrokerIds -- liveOrShuttingDownBrokerIds
val deadBrokerIds = liveOrShuttingDownBrokerIds -- curBrokerIds
val bouncedBrokerIds = (curBrokerIds & liveOrShuttingDownBrokerIds)
.filter(brokerId => curBrokerIdAndEpochs(brokerId) > controllerContext.liveBrokerIdAndEpochs(brokerId))
val newBrokerAndEpochs = curBrokerAndEpochs.filter { case (broker, _) => newBrokerIds.contains(broker.id) }
val bouncedBrokerAndEpochs = curBrokerAndEpochs.filter { case (broker, _) => bouncedBrokerIds.contains(broker.id) }
val newBrokerIdsSorted = newBrokerIds.toSeq.sorted
val deadBrokerIdsSorted = deadBrokerIds.toSeq.sorted
val liveBrokerIdsSorted = curBrokerIds.toSeq.sorted
val bouncedBrokerIdsSorted = bouncedBrokerIds.toSeq.sorted
info(s"Newly added brokers: ${newBrokerIdsSorted.mkString(",")}, " +
s"deleted brokers: ${deadBrokerIdsSorted.mkString(",")}, " +
s"bounced brokers: ${bouncedBrokerIdsSorted.mkString(",")}, " +
s"all live brokers: ${liveBrokerIdsSorted.mkString(",")}")
newBrokerAndEpochs.keySet.foreach(controllerChannelManager.addBroker)
bouncedBrokerIds.foreach(controllerChannelManager.removeBroker)
bouncedBrokerAndEpochs.keySet.foreach(controllerChannelManager.addBroker)
deadBrokerIds.foreach(controllerChannelManager.removeBroker)
if (newBrokerIds.nonEmpty) {
controllerContext.addLiveBrokersAndEpochs(newBrokerAndEpochs)
onBrokerStartup(newBrokerIdsSorted)
}
if (bouncedBrokerIds.nonEmpty) {
controllerContext.removeLiveBrokers(bouncedBrokerIds)
onBrokerFailure(bouncedBrokerIdsSorted)
controllerContext.addLiveBrokersAndEpochs(bouncedBrokerAndEpochs)
onBrokerStartup(bouncedBrokerIdsSorted)
}
if (deadBrokerIds.nonEmpty) {
controllerContext.removeLiveBrokers(deadBrokerIds)
onBrokerFailure(deadBrokerIdsSorted)
}
if (newBrokerIds.nonEmpty || deadBrokerIds.nonEmpty || bouncedBrokerIds.nonEmpty) {
info(s"Updated broker epochs cache: ${controllerContext.liveBrokerIdAndEpochs}")
}
}
- 这里会去zk里面获取所有的Broker信息; 并将得到的数据跟当前Controller缓存中的所有Broker信息做对比;
- 如果有新上线的Broker,则会执行 Broker上线的流程
- 如果有删除的Broker,则执行Broker下线的流程; 比如
removeLiveBrokers
收到删除节点之后, Controller 会觉得Broker已经下线了,即使那台Broker服务是正常的,那么它仍旧提供不了服务
7. Broker上下线
本篇主要讲解Controller与Brokers之间的网络通信 故Broker上下线内容单独开一篇文章来详细讲解 【kafka源码】Brokers的上下线流程
源码总结
本篇文章内容比较简单, Controller和Broker之间的通信就是通过 RequestSendThread 这个线程来进行发送请求;
RequestSendThread维护的阻塞请求队列在没有任务的时候处理阻塞状态;
当有需要发起请求的时候,直接向queue中添加任务就行了;
Controller自身也是一个Broker,所以Controller发出的请求,自己也会收到并且执行
Q&A
如果Controller与Broker网络连接不通会怎么办?
会一直进行重试, 直到zookeeper发现Broker通信有问题,会将这台Broker的节点移除,Controller就会收到通知,并将Controller与这台Broker的
RequestSendThread线程shutdown;就不会再重试了; 如果zk跟Broker之间网络通信是正常的,只是发起的逻辑请求就是失败,则会一直进行重试
如果手动将zk中的 /brokers/ids/ 下的子节点删除会怎么样?
手动删除
/brokers/ids/Broker的ID, Controller收到变更通知,则将该Broker在Controller中处理下线逻辑; 所有该Broker已经游离于集群之外,即使它服务还是正常的,但是它却提供不了服务了; 只能重启该Broker重新注册;